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In this paper, the effect of side branches �or double stub� on the transmission of acoustical wave through
periodic structures made of glued beads constituted of solid materials is studied. The displacement picked up
at the end of the waveguide is numerically analyzed with the help of the dispersion curves. Experiments are
conducted on finite one-dimensional specimens �chains� on which are grafted periodically double stubs. Two
situations are investigated in which the mass of the stub beads and beads in the chain are identical or different.
The experimental results are compared with numerical calculations and clearly demonstrated that the mechani-
cal properties of the materials are of crucial importance for the width of the pass and forbidden bands �or gaps�
as well as the existence of stub, evanescent, and propagating modes.
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I. INTRODUCTION

The propagation of waves in periodic media is studied for
many years and covers a large area of problems encountered
in physics. Due to the existence of allowed and forbidden
frequency bands of electromagnetic �e.m.� wave propagation,
the so-called photonic crystals �such as modulated dielectric
or metallic periodic structure� were investigated in the two
last decades both theoretically and experimentally. The stud-
ies pointed out that these periodic structures have photonic
band gaps �bands of frequencies in which the e.m. waves are
forbidden�. Many applications of this effect are observed in
waves optics with layered structures such as periodic dielec-
tric layers.1–4 Yablonovitch et al.5 have shown that if the
perfect three-dimensional periodicity is broken by a local
defect, local e.m. waves can occur within the forbidden band
gap. Such periodic systems permit to control the propagation
of light and the possibility to build optical devices.

In the last few years, the study of acoustic and elastic
wave propagation in periodic materials �known as phononic
crystals� has received considerable interest. One of the main
reasons for this attention is the rich physics encountered in
this kind of wave: the vector character, the mixing of the
longitudinal and transverse waves, and the various param-
eters which control the propagation.

By analogy to photonic materials, several studies have
been devoted to the transmission of elastic waves through
periodic waveguides �WGs� in one-dimensional �1D� to
three-dimensional phononic crystals. The existence of band
gaps �frequency range in which no wave is transmitted� in
periodic systems was exhibited theoretically and experimen-
tally. Various periodic waveguides were explored: the one-
dimensional layered structures,6,7 the two-dimensional
arrays,5,8–10 and the composite systems11–19 consisting of liq-
uid or solid circular rods or cavities in epoxy air and water
matrix. Other works have reported the band structure and the
transmission spectrum for acoustic wave propagation in WG
on which periodic side branches of different types are at-

tached periodically: T shape samples,20–22 double stubs,23–25

and systems made up of several periodic dangling side
branches.26

In a recent paper,27 a study has been performed on the
transmission of a short acoustic pulse propagating through
chains �or WG� constituted of odd glued metal beads in the
middle of which is symmetrically attached a double stub of
varying diameter. It has been shown that the frequency of the
dip in the response can be adjusted by varying the stub mass,
allowing potential applications for the filtering. In the present
work, the former study is extended to the case of periodic
double stub waveguide made up of spheres glued end to end
to realize a finite periodic. The paper presents results on the
transmission of elastic wave through a finite number of N
identical units �or cells� and show how one can obtain dif-
ferent band structures by varying the properties of the side
beads �or stubs� grafted to the main waveguide in a periodic
manner.

First, the dispersion curves �wave number versus fre-
quency� and the displacement at the opposite end of the ex-
citation of finite chains times the frequency are numerically
calculated. In analogy to photonic crystals, different kinds of
resonant structures are observed in the transmission coeffi-
cients and are analyzed in terms of stub, evanescent, and
propagating modes. Then, an experimental work is devoted
to limited specimen including N unit cells. The results show
that the acoustic-phonon band structure can be artificially
controlled by adjusting the material of the lateral stubs.

II. NUMERICAL ANALYSIS

A. Principle of calculations

Numerical calculations are based on the finite-element
method, using the ATILA code.28 Two types of analysis are
performed, considering either infinite or finite periodic
chains of beads.
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In the case of infinite periodic chains of beads, only one
unit cell of the periodic grating is meshed and then Bloch-
Floquet relations are applied, which are the phase relations
between nodes separated by one spatial period, named a. The
calculation, which is a modal analysis,29 is performed and
the dispersion curve is plotted by varying the wave number k
in the half Brillouin zone �0,� /a�. The dispersion curves
enable us to deduce propagation modes, cut-off frequencies,
and stop bands.30,31

In order to study more precisely the transmission through
a limited periodic chain of beads with stubs, harmonic analy-
ses are performed at several frequencies. In that case, a pre-
scribed longitudinal force is applied on the left extremity of
the chain and the displacements either at the right extremity
of the chain or along the stubs, are calculated and displayed.
A longitudinal wave is launched on the left side of the
phononic crystal. Although mode conversion may occur in
the phononic structure, only the longitudinal part of the dis-
placement should be detected on the output side. The nu-
merical variations in the displacement at the end of the chain
multiplied by the frequency, noted Uxf , are plotted in deci-
bels for a comparison with experimental results. For both
determinations, the reference is arbitrary.

To avoid long time of calculation, infinite cylinders are
considered instead of beads, using plane strain condition and
so a two-dimensional mesh is used, instead of a three-
dimensional mesh. Previous numerical tests27 have shown
that this change is valid by using a multiplicative factor on
the frequency between the beads and the cylinders results. In
the first part of the analysis that is focused on theoretical
analysis only, losses are not taken into account. In the second
part of the paper, for a better comparison between numerical
results and experiments, losses are introduced in the calcula-
tion by using complex material constants. In the calculations,
the ratio between the imaginary and the real parts of the
Young’s modulus has been estimated around 1%.32

B. Results and analysis: Case of an infinite chain

The results are presented for infinite chains of beads with
periodic symmetric stub. The unit cell includes two identical
steel beads, 8 mm in diameter. On one of the two beads, two
beads are stuck symmetrically. They have the same diameter
as the beads along the chain �Fig. 1�. The beads along the
chain are made up of steel whereas the stub beads are made
up of steel, brass, or glass. The mechanical and acoustical
properties used in the calculations are presented in Table I. In
the study, symmetric stubs have been privileged to avoid

bending motions of the whole sample that appear with a
nonsymmetric stub. The numerical dispersion curves are
given in Figs. 2�a�–2�c� for the stubs made up of steel, brass,
and glass, respectively. They are represented as the wave
number versus frequency for better further comparisons, but
generally, they are classically represented as frequency ver-
sus wave number. Vertical lines in our representation corre-
spond to “flat” band in a classical frequency versus wave-
number representation. Therefore, for sake of simplicity,
vertical lines are now referred as flat bands. These flat bands
have been previously studied in the case of photonic
crystals33 and are related to modes of the stub. The disper-
sion curves clearly exhibit allowed and forbidden bands. Our
investigations are limited to the first five modes. The analysis
of Fig. 2 shows three groups of separated branches:

�i� A first group of three branches is observed in the low-
frequency part of the dispersion curve. Its width increases

Unit cell
a

Steel beads along the chain

Beads in the stubs are
made of steel, brass or glass

x direction

FIG. 1. Sketch of the finite periodic waveguide.

TABLE I. Mechanical and acoustical properties.

Material
E �Young’s modulus�

�1011 N /m�
Poisson’s

ratio
Density
�kg /m3�

CL

�m/s�
CT

�m/s�

Glass 0.73 0.22 2540 5728 3432

Steel 2.15 0.29 7900 5740 3090

Brass 0.92 0.33 8270 4059 2045
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FIG. 2. Dispersion curves �wave number as a function of fre-
quency� with steel beads in the chain and stub made up of �a� steel
beads, �b� brass beads, and �c� glass beads.
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with the shear velocity of the material which constitutes the
stub, named CT. The first vertical band, which can be re-
ferred to a flat band, except for wave number lower than
10 m−1, is related to a bending motion of the stub, later
denoted by the letter B. The second band is not vertical. It is
dispersive and is related to a propagation mode. Finally, in
the case of the particular investigated cells, the last branch of
this group appears to be dispersionless mode �or vertical
mode� and will be referred also as a flat branch. The mode
associated to this branch corresponds to a longitudinal mo-
tion of the stub, named stub mode, later denoted by letter S.

�ii� The fourth mode is characteristic of the material in the
stub. When the stub beads are the same as the chain beads,
this mode is quasidispersionless and the corresponding
branch is a vertical line �Fig. 2�a��. When the stub material is
different from the chain material, this mode is transformed
into narrow bands as it was previously observed in the case
of photonic crystals33 and exhibits a curvature which may
change as it is illustrated in Figs. 2�b� and 2�c�. The propa-
gating mode corresponding to this branch will be later de-
noted by letter F. Additional and systematic numerical calcu-
lations have shown that the curvature of the fourth branch
seems to change as the ratio between the densities of the
beads in the waveguide and in the stubs goes through one.
This result is concerned with materials such as glass, brass,
steel, aluminum, tungsten, and gold.

�iii� Finally, the fifth branch is a nonvertical band and is
related to propagation modes. The curvature of this branch is
the same whatever are the materials of the stub and wave-
guide.

In conclusion, this analysis confirms that the dispersion
curves are drastically related to the acoustical and mechani-
cal properties of the materials of stub beads. One can notice
that for these periodic specimens, adding stubs of the same
material renders the stop bands much larger.

C. Results and analysis: Case of finite chains

In this section, finite chains including N�1�N�21� cells
periodically distributed are considered. The displacement
component along the chain �UX� is numerically calculated as
a function of the frequency �f� at a detection point situated at
the other side of the chain with comparison to the side of the
excitation. Then, the variations in the displacement multi-
plied by frequency UXf are plotted as a function of the fre-
quency. The resonance phenomena occurring in the 1D
phononic crystal made of glued beads can induce different
kinds of resonance structures in the transmission coefficients,
similar to those depicted in Fig. 8 of Ref. 34. These plots
point out a succession of peaks and dips which correspond
respectively to maximum and minimum of the displacement
in the x direction �main axis of the sample�, as previously
observed in Ref. 35. Only two of the previous cases are
considered �steel stubs and brass stubs�, with a view to study
the case of a flat band in a band gap and the case of a flat
band in a pass band, for various number of cells.

1. Stub beads are made up of steel

In that case, both the beads in the chain and the stub beads
are made of steel. Figure 3 presents the frequency variations

in UXf when 6 cells �Fig. 3�b�� and 21 cells �Fig. 3�c�� are
considered. The top figure �Fig. 3�a�� is the dispersion curve
and allows the identification of the modes. Several observa-
tions are done from Figs. 3�b� and 3�c�.

�a� In the lower part of the curves, a dip is observed. This
dip is associated to a narrow gap which opens up about the
crossing point of a flat band and an extended band of propa-
gating modes. It is referred by letter B on the figure. At the
frequency for which the dip occurs, the stubs have a bending
motion.

�b� Then, the first pass band contains N−1 peaks, where N
is the number of cells in the waveguide. This has been pre-
viously observed in the case of linear chains of beads, with-
out stubs27 as well as in the case of photonic crystals.36 These
modes are referred as propagation modes, where the dis-
placement along the chain can be written as cos�n�x /NR�,
with N the number of cells, R the radius of the beads, x the
position along the chain, and n an integer �n=0 to N−1�.

�c� The transmission drops drastically at the end of the
first group of branches, referred by letter S in Figs. 3�b� and
3�c�. This dip is associated to a narrow band gap, as previ-
ously observed �see dip B� and corresponds to a longitudinal
motion of the stub, referred as a stub mode. The correspond-
ing displacement field is drawn in Fig. 4�a� for N=6. One
can notice that the main motion is located in the stub: this

FIG. 3. Steel beads in the chain and in the stubs. �a� Dispersion
curve, �b� variations in UXf as a function of the frequency �N=6�,
and �c� variations in UXf as a function of the frequency �N=21�.
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mode corresponds to a stationary mode of each stub and does
not contribute to the transmission.2

�d� An isolated peak referred by letter F in Figs. 3�b� and
3�c� appears in the first band gap and is related to the vertical
branch �the fourth� in the dispersion curve �Fig. 3�a��. The
inserted figures in Figs. 3�b� and 3�c� are a zoom of the curve
in the vicinity of the flat band: it shows a succession of
several maxima and minima, which number is related to the
number of cells in the waveguide.36 This “peak” may consti-
tute a “selective filter.” Figure 4�b� presents the displacement
field of the chain containing six cells at the peak frequency,
noticed by letter F in Fig. 3�b�: the beads where the stubs are
attached do not move whereas the other beads in the chain
have a longitudinal motion. This very lightly dispersive
mode is referred as a propagating flat-band mode.

�e� In addition, two peaks, referred with letter E in Figs.
3�b� and 3�c� exist in the gaps. The associated modes that do
not exist in the dispersion curve correspond to evanescent
modes. The peaks are pronounced when the number N is low
�Fig. 3�b�� but decrease rapidly as the number of cell in-
creases �Fig. 3�c��. The corresponding displacement field is
presented in Fig. 4�c� for N=6, where the evanescent char-
acter of the mode is clearly demonstrated.

�f� Finally, the higher pass band contains five peaks, in the
case of six cells chain, much more peaks in the case of 21
cells chain but the resolution is not small enough to get the
20 peaks. It corresponds to propagating modes, where N−1
peaks are observed when the chain contains N cells.36

By varying the number of cells and collecting the values
of the resonance frequencies, a numerical spectroscopic dia-
gram is plotted �Fig. 5�. This representation, previously used
in the case of photonic crystals,36 shows the spreading of the
pass bands, in good accordance with the dispersion curve. It
displays several pass bands and gaps in which evanescent
modes �E�, propagating modes, stub mode �S�, bending mode
of the stub �B�, and flat-band mode �F� can be identified.
Notice that for N=1, all the modes are observed except the
propagating modes and the flat propagating band mode.

2. Stub beads are made up of brass

When the stub beads are made up of brass, Fig. 6 presents
the frequency variations in UXf for 6 �Fig. 6�b�� and 21 cells

�Fig. 6�c��, compared to the dispersion curve �Fig. 6�a��. The
curves are similar to those presented in Fig. 3, except that the
mode denoted F �the propagating flat-band mode in the pre-

(a)

(b)

(c)

FIG. 4. Steel beads in the chain and in the stubs. N=6 cells.
Displacement field of different modes �a� stub mode �S�, �b� non-
dispersive flat-band mode �F�, and �c� evanescent mode �E�. The
arrows show the displacement direction whereas the dots corre-
spond to fixed positions.
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vious case� becomes clearly dispersive. In the same way, the
following observations are done: �a� A dip �B� is once again
observed in the lower part of the curve, corresponding to the
narrow band gap in the dispersion curve, where the stubs
have a bending motion. �b� Then, the first pass band contains
N−1 peaks, related to propagating modes �Fig. 6�b��. Again
the resolution is not small enough to get the 20 peaks �Fig.
6�c��. �c� A sharp dip is observed near the end of the first pass
band, related to a stub mode and referred with letter S in
Figs. 6�b� and 6�c�. Due to the choice of the materials con-
stituting the chain and the stubs, this mode appears in the
pass band. This behavior shows that the sample can be used
as a “rejective filter.” As the number of cells N is increasing,
the depth of the dip is increasing. �d� A narrow pass band
appears in the band gap, related to the fourth branch in the
dispersion curve, referred with letter F in Figs. 6�b� and 6�c�.
This time, several peaks are observed directly in the figure,
without the need of a precise zoom. This pass band is larger
than in the previous case �Fig. 3�, due to the particular choice
of the beads in the chain and in the stub.33 Thanks to this
pass band, the sample could be used as a selective filter in
that case. �e� Once again, evanescent modes are observed,
referred with letter E in the figures. They tend to disappear
when the number of cells in the sample is increasing. �f�
Finally, the last pass band corresponds to propagating modes,
containing N−1 peaks, where N is the number of cells in the
chain.

These calculations confirm the acoustic-phonon band
structure and that it is possible to significantly alter it by
modifying the material in the stubs. Depending on the nature
of the stub, pass band �stop band� could appear in band gap
�pass band�, inducing a selective �rejective� filter behavior.
By an appropriate choice of the periodic stub, one can tailor
the acoustic response of the samples.

III. EXPERIMENTAL STUDY

A. Experimental setup and general considerations on
experiments

Experiments were conducted on different specimens.
Stubs are made by gluing symmetrically and periodically
beads on the spheres of the chain. The number �N� of cells in
the periodic structure varies from 1 to 6.

A short acoustic pulse is used for the excitation at one of
the ends of the chain and the transmitted signal is detected at
the opposite side.37 The power spectrum of the recorded sig-
nal is then calculated via a fast Fourier transform and com-
pared to the numerically calculated curves showing the dis-
placement multiplied by the frequency as a function of the
frequency.

During experiments, and for a better analysis of the next
experimental curves, the following observations have been
performed: �a� At very low frequency, a peak—not predicted
by the theory—appears in the power spectrum, the resonance
frequency of which decreases as the number of cells in-
creases. Additional experiments have confirmed that this
mode could be a “chain mode” generated by the contact be-
tween the transmitters and the sample and following the
Hertz’s law.38 This mode that is probably due to the experi-

mental procedure is pointed out in all the experiments.
Therefore, it has been systematically eliminated from the ex-
perimental curves as it was done before.39 �b� The stub
modes should appear as a dip in the power spectrum but have
not been clearly experimentally identified. �c� The measure-
ments at high frequencies �or low wavelength� may present a
large dispersion of the data because the wave is more sensi-
tive to the structure of the contact area between two spheres.
This area is not well controlled and can change from one
sample to the other. That could produce a dispersion of the
data from one record to the other. Therefore, each experi-
mental point corresponds to an average of values over sev-
eral measurements in different conditions of gluing. For low
frequencies, the peak positions of the first branch are not
affected by the gluing and the measured dispersion of the
data is lower than �0.5 kHz. For high frequencies, it can
reach �2 kHz. �d� At high frequency, attenuation takes
place, particularly for the sample with glass stubs.

B. Experimental results

The results presented in this section concern different
cases of the unit cell, constituting the investigated wave-
guide: the chain is always made of steel beads, whereas, the
stubs are made of steel, brass, or glass beads. For these
samples, the power spectrum are measured and exhibit sharp
peaks that correspond to resonance frequencies associated to
the different modes generated in the sample.

As an example, Fig. 7 presents two power spectrum ex-
perimentally recorded for the samples with brass stubs �Fig.
7�a�� and with glass stubs �Fig. 7�b��, made up of four cells.
These records �full lines� are compared with numerical re-
sults �dotted lines�. Numerical results presented in Sec. II are
concerned with cylinders. For a comparison between experi-
mental and numerical results a multiplicative factor on the
frequency will be taken into account in the numerical results,
as previously explained �cf. Sec. II A�. Losses are considered
in the materials and estimated around 1%. A reasonably good
agreement is observed between the two determinations. The
discrepancies which are found between the position of the
numerical and the experimental peaks may be due to the
modeling that considered cylinders instead of spheres. In the
case of brass stubs �Fig. 7�a��, one can notice three regions
with peaks �15� f �45 kHz, 60� f �70 kHz, and 85� f
�100 kHz�, associated to the two pass bands and the flat
pass band �F� �see Fig. 2�b��. When the stubs are made up of
glass �Fig. 7�b��, only the first pass band is observed �15
� f �45 kHz� in the experimental spectrum, as the attenua-
tion takes place at high frequency. In Figs. 7�a� and 7�b�, one
can also experimentally and numerically identify other
modes such as evanescent mode �E� and propagating flat-
band mode �F�. The bending �B� and the stub �S� modes are
only identified on the numerical curves, and they are de-
tected with difficulty on the experimental spectrum.

Analyses similar to those performed with Fig. 7 are con-
ducted with various lengths of samples �number of cells 1
�N�6�. From the power spectrum, the experimental spec-
troscopic diagrams are built and presented in Figs. 8�a�–8�c�
for steel, brass, and glass stubs, respectively. The different
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evanescent modes, pass bands, and flat bands are well exhib-
ited. Some of the dots that could be aligned on vertical lines
present some small discrepancies: it gives an idea of the
accuracy of the measurements. As previously mentioned, the
bending �B� and the stub �S� modes are not reproduced on
the diagrams because they are not enough marked on the
experimental spectrum.

The first spectroscopic diagram �Fig. 8�a�� can be com-
pared easily with the numerical one presented in Fig. 5. One
pass band is clearly identified and is related to propagation
modes. Then, three modes are identified: the first one and the
third one are related to evanescent modes �E� while the sec-
ond one is associated to a flat propagating mode �F�. The
frequencies of these three modes are the same whatever the
number of cell is.

When the sample has stub beads made up of brass �Fig.
8�b��, three pass bands are identified, similarly to the pass
bands observed on the dispersion curves �Fig. 6�a�� and on
the previous experimental curve �Fig. 7�a��. The first and the
third pass bands are referred to propagation modes whereas
the second one is referred to the dispersive propagating flat
band mode �F�. Two other modes are observed, which fre-
quencies are independent of the number of cells. Both are
identified as evanescent mode �E�. Dips corresponding to the
stub modes �S� are not clearly identified in the experimental
curves.

Finally, when the beads in the chain are made up of steel
and the stub beads are made up of glass �Fig. 8�c��, only the
low-frequency pass band is identified because attenuation is
taking place at higher frequency and no signal is obtained. In
addition to the first pass band, an isolated mode is observed
at higher frequency: it is an evanescent mode �E�.

IV. CONCLUSION

This paper has presented a systematic numerical investi-
gation of the resonance frequencies of a waveguide with
grafted periodic double stubs. The present numerical and ex-
perimental studies have demonstrated that by a proper choice
of the material of the periodic waveguide and stubs, it is
possible to optimize the acoustic-phonon band structure. The
existence and the properties of gaps, pass bands, and disper-
sionless modes in the power spectrum of the transmitted
acoustical signal through the specimen, are strongly depen-
dent on the material of the stubs with comparison to the one
of the waveguide. The presence of stub in the chain intro-
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cells N �1�N�6�. �a� Steel beads and steel stubs, �b� steel beads
and brass stubs, and �c� steel beads and glass stubs. Full circles:
peaks corresponding to propagating modes in the pass bands, full
triangles: peaks related to the �F� band, empty triangles: peaks re-
lated to evanescent modes �E�.
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duces dips and peaks in the displacement plots that can have
potential applications for rejective and selective filtering. The
numerical calculations and the experimental data are qualita-
tively in good agreement and reproduces well pass band,
gaps, evanescent, stub modes, and flat-band modes. This
contribution to the propagation of acoustic elastic wave in
phononic systems looks to be of a great interest because of

the involved physics as it was done in photonic domain. This
study has to be extended to the case of cells with different
topologies.
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